Cách để Giải phương trình bậc hai

3 Phương pháp:Phân tích phương trình thành nhân tửDùng công thức phương trình bậc haiHoàn thành phép bình phương

Phương trình bậc hai là phương trình đa thức một biến với 2 là số mũ cao nhất của biến đó. Có ba cách giải phương trình bậc 2 chính: 1) phân tích phương trình thành nhân tử nếu có thể, 2) dùng công thức phương trình bậc 2, hoặc 3) hoàn thành phép bình phương. Hãy làm theo những bước sau đây để biết cách trở nên thành thạo với ba phương pháp này.

1
Phân tích phương trình thành nhân tử

  1. 1
    Cộng mọi số hạng giống nhau và đưa chúng sang một vế của phương trình. Bước đầu tiên trong việc phân tích phương trình thành nhân tử chính là đưa mọi số hạng của nó sang một vế sao cho mang dấu dương. Để kết hợp các số hạng, hãy cộng hoặc trừ mọi số hạng chứa , mọi số hạng chứa và hằng số (số hạng là số nguyên), chuyển chúng sang một vế và không để lại gì ở vế kia. Khi đó, bạn có thể viết "0" ở phía bên kia của dấu bằng. Đây là cách thực hiện:[1]
  2. 2
    Phân tích biểu thức thành nhân tử. Để phân tích biểu thức thành nhân tử, bạn phải dùng các thừa số của số hạng chứa (3) và các thừa số của hằng số (-4), để chúng nhân với nhau và rồi cộng thành số hạng chính giữa (-11). Đây là cách thực hiện:
    • Bởi chỉ có một bộ thừa số khả thi, , bạn có thể viết lại trong dấu ngoặc đơn như sau: .
    • Tiếp đến, dùng phép khử kết hợp các thừa số của 4 để tìm được tổ hợp tạo nên -11x khi nhân với nhau. Bạn có thể dùng 4 và 1 hoặc 2 và 2 bởi chúng đều có tích là 4. Chỉ cần nhớ rằng một thừa số phải âm bởi số hạng của ta là -4.
    • Bằng phương pháp thử, ta sẽ kiểm tra tổ hợp các thừa số . Khi triển khai nhân, ta thu được . Cộng các số hạng , ta có , chính là số hạng chính giữa mà ta đang hướng đến. Vậy là ta đã vừa phân tích phương trình bậc hai thành nhân tử.
    • Như một ví dụ của phép thử, hãy cùng kiểm tra một tổ hợp bị lỗi (không đúng) của : = . Kết hợp các số hạng này, ta sẽ thu được . Dù đúng là -2 và 2 có tích bằng -4, số hạng ở giữa không chính xác, bởi ta cần có chứ không phải là .
  3. 3
    Cho từng biểu thức trong dấu ngoặc bằng không như những phương trình riêng lẻ. Từ đó, tìm hai giá trị của khiến phương trình tổng thể có giá trị bằng không = 0. Lúc này, khi đã phân tích phương trình thành nhân tử, bạn chỉ việc cho biểu thức trong dấu ngoặc bằng không. Vì sao vậy? Đó là bởi để tích bằng không, ta có "nguyên tắc, luật hay đặc tính" là một nhân tử phải bằng không. Do đó, ít nhất một giá trị trong dấu ngoặc, phải bằng không; nghĩa là (3x + 1) hoặc (x - 4) phải bằng không. Nên ta có hoặc .
  4. 4
    Giải độc lập từng phương trình "bằng không" này. Phương trình bậc hai có hai nghiệm khả thi. Hãy tìm từng nghiệm khả thi cho biến x bằng cách tách biến và viết ra hai nghiệm của nó như là kết quả cuối cùng. Đây là cách làm:
    • Giải 3x + 1 = 0
      • Trừ hai vế: 3x = -1 .....
      • Chia hai vế: 3x/3 = -1/3 .....
      • Thu gọn: x = -1/3 .....
    • Giải x - 4 = 0
      • Trừ hai vế: x = 4 .....
    • Viết bộ nghiệm riêng khả thi: x = (-1/3, 4) ....., nghĩa là x = -1/3, hoặc x = 4 đều có khả năng đúng.
  5. 5
    Kiểm tra x = -1/3 trong (3x + 1)(x – 4) = 0:

    Thay vào biểu thức, ta có (3[-1/3] + 1)([-1/3] – 4) ?=? 0 ..... Thu gọn: (-1 + 1)(-4 1/3) ?=? 0 ..... Thực hiện phép nhân, ta được (0)(-4 1/3) = 0 ..... 0 = 0 ..... Phải, x = -1/3 là một nghiệm của phương trình.
  6. 6
    Kiểm tra x = 4 trong (3x + 1)(x - 4) = 0:

    Thay vào biểu thức, ta có (3[4] + 1)([4] – 4) ?=? 0 ..... Thu gọn, ta được: (13)(4 – 4) ?=? 0 ..... Thực hiện phép nhân: (13)(0) = 0 ..... 0 = 0 ..... Phải, x = 4 là một nghiệm của phương trình.
    • Vậy cả hai nghiệm khả thi này đều đã được "kiểm tra" riêng lẻ, và có thể khẳng định rằng cả hai đều giải được bài toán và là hai nghiệm đúng riêng biệt.

2
Dùng công thức phương trình bậc hai

  1. 1
    Cộng mọi số hạng giống nhau và chuyển chúng sang một vế của phương trình. Chuyển mọi số hạng sang một vế của dấu bằng sao cho số hạng chứa mang dấu dương. Viết lại các số hạng theo số bậc giảm dần, nghĩa là số hạng đứng trước, tiếp đến là và cuối cùng là hằng số. Đây là cách làm:
    • 4x2 - 5x - 13 = x2 -5
    • 4x2 - x2 - 5x - 13 +5 = 0
    • 3x2 - 5x - 8 = 0
  2. 2
    Viết công thức phương trình bậc hai. Đó là: [2]
  3. 3
    Xác định giá trị của a, b và c trong phương trình bậc hai. Biến a là hệ số của x2, b là hệ số của x và c là hằng số. Với phương trình 3x2 -5x - 8 = 0, a = 3, b = -5, và c = -8. Hãy viết ra giấy.
  4. 4
    Thay giá trị của a, b và c vào phương trình. Giờ khi đã biết giá trị của ba biến trên, bạn có thể đưa chúng vào phương trình như sau:
    • {-b +/-√ (b2 - 4ac)}/2
    • {-(-5) +/-√ ((-5)2 - 4(3)(-8))}/2(3) =
    • {-(-5) +/-√ ((-5)2 - (-96))}/2(3)
  5. 5
    Tiến hành tính toán. Sau khi đã thay số vào, hãy thực hiện phần tính toán còn lại để thu gọn dấu dương hay âm, nhân hay bình phương những số hạng còn lại. Đây là cách làm:
    • {-(-5) +/-√ ((-5)2 - (-96))}/2(3) =
    • {5 +/-√(25 + 96)}/6
    • {5 +/-√(121)}/6
  6. 6
    Thu gọn căn bậc hai. Nếu nằm dưới dấu căn là một số chính phương, bạn sẽ có được một số nguyên. Nếu đó không phải là một số chính phương, vậy hãy thu gọn nó về dạng căn đơn giản nhất. Nếu đó là số âm, và bạn chắc chắn rằng nó phải mang giá trị âm, nghiệm sẽ khá phức tạp. Trong ví dụ này, √(121) = 11. Ta có thể viết: x = (5 +/- 11)/6.
  7. 7
    Giải để có nghiệm âm và dương. Nếu đã loại bỏ căn bậc hai, bạn có thể tiếp tục cho đến khi tìm được nghiệm âm và dương của x. Giờ, khi đã có (5 +/- 11)/6, bạn có thể viết hai lựa chọn:
    • (5 + 11)/6
    • (5 - 11)/6
  8. 8
    Tìm nghiệm âm và nghiệm dương. Ta chỉ việc thực hiện tính toán:
    • (5 + 11)/6 = 16/6
    • (5-11)/6 = -6/6
  9. 9
    Thu gọn. Để thu gọn đáp án, bạn chỉ việc chia cả tử và mẫu cho ước chung lớn nhất của chúng. Chia tử và mẫu của phân số đầu tiên cho 2 và chia tử và mẫu của phân số thứ hai cho 6, bạn đã tìm được x.
    • 16/6 = 8/3
    • -6/6 = -1
    • x = (-1, 8/3)

3
Hoàn thành phép bình phương

  1. 1
    Chuyển mọi số hạng sang một vế của phương trình. Đảm bảo rằng a hay x2 mang dấu dương. Đây là cách làm:[3]
    • 2x2 - 9 = 12x =
    • 2x2 - 12x - 9 = 0
      • Trong phương trình này, a bằng 2, b bằng -12 và c bằng -9.
  2. 2
    Chuyển c hay hằng số sang vế bên kia. Hằng số là số hạng bằng số không chứa biến. Hãy chuyển nó sang vế bên phải của phương trình:
    • 2x2 - 12x - 9 = 0
    • 2x2 - 12x = 9
  3. 3
    Chia cả hai vế cho hệ số a hay hệ số của x2. Nếu x2 không có số hạng nào đứng trước, vậy hệ số của nó là 1 và bạn có thể bỏ qua bước này. Trong trường hợp của chúng ta, bạn sẽ phải chia toàn bộ các số hạng có trong phương trình cho 2, như thế này:
    • 2x2/2 - 12x/2 = 9/2 =
    • x2 - 6x = 9/2
  4. 4
    Chia b cho hai, lấy bình phương của nó và cộng kết quả vào hai vế. Trong ví dụ này, b bằng -6. Ta làm như sau:
    • -6/2 = -3 =
    • (-3)2 = 9 =
    • x2 - 6x + 9 = 9/2 + 9
  5. 5
    Thu gọn hai vế. Phân tích vế trái thành phân tử, ta có (x-3)(x-3), hay (x-3)2. Cộng thêm vào vế phải để có 9/2 + 9, hay 9/2 + 18/2, và thu được 27/2.
  6. 6
    Tìm căn bậc hai của cả hai vế. Căn bậc hai của (x-3)2 chính là (x-3). Bạn có thể thể hiện căn bậc hai của 27/2 dưới dạng ±√(27/2). Vậy, x - 3 = ±√(27/2).
  7. 7
    Thu gọn dấu căn và tìm x. Để thu gọn ±√(27/2), ta tìm số chính phương nằm trong 27, 2 hoặc thừa số của chúng. Số chính phương 9 có trong 27, bởi 9x3=27. Để lấy 9 ra khỏi dấu căn, ta rút nó ra và viết 3, căn bậc hai của nó, ngoài dấu căn. Thừa số 3 còn lại trong tử số không thể được đưa ra ngoài, do đó, vẫn nằm dưới dấu căn. Đồng thời, ta cũng để nguyên 2 ở mẫu của phân số. Tiếp đến, đưa hằng số 3 ở vế trái của phương trình sang vế phải, và viết xuống hai nghiệm:
    • x = 3 +(√6)/2
    • x = 3 - (√6)/2)

Lời khuyên

  • Như có thể thấy, dấu căn không biến mất hoàn toàn. Do đó, các số hạng nằm ở tử số không thể được cộng dồn (bởi chúng không phải là những số hạng có tính chất giống nhau). Bởi vậy, phân tách cộng-hay-trừ là vô nghĩa. Thay vì vậy, ta có thể chia mọi thừa số chung nhưng CHỈ khi hằng số hệ số của căn thức nào cũng chứa thừa số đó.
  • Nếu nằm dưới dấu căn không phải là một số chính phương, một vài bước cuối có thể sẽ được thực hiện khác đi đôi chút. Chẳng hạn như:
  • Nếu "b" là một số chẵn, công thức sẽ là: {-(b/2) +/- √(b/2)-ac}/a.

Thông tin Bài viết

Chuyên mục: Toán học

Ngôn ngữ khác:

English: Solve Quadratic Equations, Español: resolver ecuaciones cuadráticas, Italiano: Risolvere le Equazioni Quadratiche, Deutsch: Quadratische Gleichungen lösen, Português: Resolver Equações de 2º Grau, Français: résoudre une équation du second degré, Nederlands: Kwadratische vergelijkingen oplossen, 中文: 解二次方程, Русский: решать квадратные уравнения, Bahasa Indonesia: Menyelesaikan Persamaan Kuadrat, 日本語: 二次方程式を解く, ไทย: แก้สมการกำลังสอง, العربية: إيجاد أصفار الدالة, 한국어: 이차방정식의 근 구하는 법, हिन्दी: एक गणितीय फंक्शन के शून्य पता करें

Trang này đã được đọc 1.049 lần.

Bài viết này đã giúp ích cho bạn?